Published in Applied Sciences, Volume 12, Issue 3, DOI 10.3390/app12031246
Authors: Božidar Potočnik, Martin Šavc
Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
Abstract: Automated detection of ovarian follicles in ultrasound images is much appreciated when its effectiveness is comparable with the experts’ annotations. Today’s best methods estimate follicles notably worse than the experts. This paper describes the development of two-stage deeply-supervised 3D Convolutional Neural Networks (CNN) based on the established U-Net. Either the entire U-Net or specific parts of the U-Net decoder were replicated in order to integrate the prior knowledge into the detection. Methods were trained end-to-end by follicle detection, while transfer learning was employed for ovary detection. The USOVA3D database of annotated ultrasound volumes, with its verification protocol, was used to verify the effectiveness. In follicle detection, the proposed methods estimate follicles up to 2.9% more accurately than the compared methods. With our two-stage CNNs trained by transfer learning, the effectiveness of ovary detection surpasses the up-to-date automated detection methods by about 7.6%. The obtained results demonstrated that our methods estimate follicles only slightly worse than the experts, while the ovaries are detected almost as accurately as by the experts. Statistical analysis of 50 repetitions of CNN model training proved that the training is stable, and that the effectiveness improvements are not only due to random initialisation. Our deeply-supervised 3D CNNs can be adapted easily to other problem domains.
Keywords: 3D Deep Neural Networks; 3D ultrasound images of ovaries; deep supervision; detection of follicles and ovaries; U-Net based architecture.
Paper in open access ( CC BY )